If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+30x=0
a = 4; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·4·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*4}=\frac{-60}{8} =-7+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*4}=\frac{0}{8} =0 $
| -5.9q-18=18.36+4.2q | | 59(3x+4)=180 | | 10x-26=8x-6 | | (X-10)x6=54 | | 7k=-8+5k | | -29=3–8x | | -3+17s=17s-3 | | 49+x+2x=180 | | 1/4x^2=15 | | 8x=14/24 | | -40=-3x | | 7+4d=3d | | 6(x+2)–4x+6=36 | | 3x+2=10x-36 | | -9d-10=1-9d-1 | | -24x-15=48-33x | | 3n-11=-1-75 | | –5.9q−18=18.36+4.2q | | 13x-4x+0=6 | | 20x=(3x+4)+93 | | 1/2(6y+2)=10y+1 | | 5-15c=-15-16c | | 8(x–2)+3x=61 | | 18.50+.15x=18.00+.25x | | −2x+4=−4 | | 5(5x)=81 | | x=2,0,4 | | -4(c+3)–2c=24 | | p^2-9=-1+2p | | 9s-4=-3+9s | | 10-3g=6g+11-10g | | (X+5)x4=40 |